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ABSTRACT

Let (X1, ..., X3~
) be a multinomial vector with unknown

cell probabilities (p1, ... , A subset of the cells is

to be selected in a way so that the cell associated with

the aaa11.aat cell probability is included in the selected

subset with a preassigned probability, ~~*• Suppose the loss

is measured by the size of the selected subset, S. Using

linear progranuning techniques, selection rules can be constructed

which are minimax with respect to S in the class of rules which

satisfy the P*_condition. In some situations, the rule

constructed by this method is the rule proposed by Nagel

(1970). Similar techniques also work for selection in terms

of the largest cell probability. The rules constructed in this

fashion are also minimax for selection in terms of Poisson

parameters.
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1. INTRODUCTION

In this paper, subset selection problems for the multi-

nomial distribution are considered . In these problems the aim

is to select a non-empty subset of the cells which contains

the cell with the highest or lowest cell probability. The

goal is to find a selection rule which includes the highest

or lowest cell probability with probability at least equal to

a preassigned number, P~. Having satisfied this minimum

requirement, the goal is to find a rule which effectively

excludes non-best cells. This leads to the use of the number

of cells selected or the number of non-best cells selected as

a measure of the loss to the c .Lri ’ V ’nter, Minimax rules for

these losses are considered and the main result of this paper

is that minimax rules can be constructed by solving the

appropriate linear programming problem . The rule o~itained

in this way in some situations corresponds to a particularly

simple and easy to implement rule proposed and studied by

Nage]. (1970). This rule can also be shown to have another

optimal property if the cell probabilities are in a slippage

configuration.

The subset selection problem for mul.tinomial distributions

has been previously considered by Gupta and Nagel (1967), Nagel

(1970), rancha~~kesnn (~.97l) ar.d Gu , ta and Uuan~ (~S7S) .

l r ~thax subRet selecticn rules hav . bee n recentl~ inveut igat~ d

in a çeneral setting by Berger (1979).

I--—-— ~- _____
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Section 2 contains the necessary notation for a formulation

of the problem. In Section 3, the problem of choosing the

smallest cell probability is considered and the fact that mini-

max selection rules can be constructed using linear programming

methods is proven. Examples of rules constructed in this way

are given. A particular rule which arises as the solution to

the problem is further considered in Section 4. This rule is

found to have a certain optimality property if the parameters

are in a slippage configuration. In Section 5, the analogous

results for the problem of selecting the largest cell proba-

bility are ~~~~~~~~~ In Section 6, the fact that the rules

constructed in Sections 3 and 5 are also minimax for selection

in terms of Poisson parameters is e~’p1ained .

2. NOTAT X ON AND FORMU LATION

Let X — (X , . .., X1)  be a inultinornial random vector with
V 

k 1

Z X — N. Let p = (p , . . . ,  p ) be the unknown cell
i_l i k~~probabilities with 

~ 
p 1. The ordered c’~ll probabilitiesi=l

will be denoted by p
~1~ ~ • . .  

~ 
The goal of the experi-

menter is to select a subset of the cells including the best

cell, the cell associated with p
111

. A correct selection, CS,

is the selection of any subset which contains the best cell.

If for a particular parameter value, p, more than one of the

cells is tied with thee ~~~~~~ p~, one of these cells will be

considered to be tagged and a CS occurs if the tagged cell is

selected. This assumption is not of essential importance and

can be dropped without effecting any of the results. But :t

V ., ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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(~~ j~~~~~~
, V . ~~~~dtO .aV ’.~I~~5involviflglimit5 of parameter values.

A selection rule will be denoted by t(x) — (
~~]~~&-‘ ~~~~• I

where •~ (x) is the probability of including the 
jth cell in

the selected subset having observed X - x. The •~ (x) are called

the individual selection probabilities. To insure that a non-

empty subset is always selected , only rules which satisfy
k

~ • Cx) � 1. for all x will be considered. The first requirement
i_l i -.

a selection rule must satisfy is that it has a certain

minimum probability of selecting the best cell. Let

p*, 1/k < ~~* 1, be a preassigned fixed number. Only rules

which satisfy the P*..condition, viz.,

(2.1) inf P (CSf~ ) �

p

will be considered . The set of rules which satisfy the ~~ *_
condition will be denoted by ‘

.,~

Two losses which are commonly used in subset selection

problems are the size of the selected subset, S, and the

number of non-best cells selected, S’. The r..sk using a

rule • when is the true parameter is then the expected

subset size, E~(sI.). or the expected number of non-best cells

selected , E (S’ I,). Let

k
(2.2) S(x) — I— 1— 1 —

Then S(x) is the expected subset size having observed V

.

X • x and E (SIj) — E ( S (X ) I t ) .



A selection rule, •* , is said to be minimax with respect to

Si f ~ and

(2.3) m i  sup E.)(S~+~ — sup E ( S I , *).
~) *  p —

Replace S by S’ in (2.3) to define ininimaxity with respect to

S’. Berger (1979) investigated minimaxity with respect to S

and S’ in a general setting. In Section 3, selection rules

which are minimax with respect to S and S’ will be constructed.

3. CONSTRUCTION OF MINI MAX RULES

In Theorem 3.1, the following class of selection rules will

be shown to be minimax with respect to S and S’. Let 0* be

tne class of selection rules which satisfy : (i) •j
(~~~

) — ~j(Xj)

for 1 s i ~ K , i.e., the selection or rejection of the 
jth cell

depends only on the number of observations in the ~
th cell;

(11 )  (in) 
~ ~i

(’
~ 

if 0 in ‘~ n ‘ N and 1 ~ i K , i.e., the

V 
probability of aelectin~ the i

th cell decreases as the number

of observations in the jth cell increases;
k

(iii) S(~) — I (~j(X j) is a Schur concave function of ~i—i
(iv) E

2
(&
i(Xi

)) — P~ for 1 ‘s i ‘. k where — (1/k, ... , 1/k).

Remark 3.1. The requirement in (i) that the decision to include

or exclude the ith cell depends only on X~ may seem to be a

H waste of the information contained in the other Xj’S. But

since ~ X
1 

- N , if X . is “large” then the other X
i
’s must be

I 

i—i 1

- . __ 
~~~~~~~ . ~~~~~~~~~~~~~~~~~~~ V 
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small and if X is “ small” , some of the other X. ’s must be
i J

large . So information about the other X ’ s is contained in

and the requirement is not as counterintuitive as it would be

in a problem in which the X~~’s are independent , e .g . ,  the

normal means problem (see Gupta ( 1965) ) .  The rules considered

by Nagel (1970) had property (i) as well as (ii) and (iv).

Remark 3.2. Condition (ii) seems reasonable since larger

values of X~ indicate larger values of p1.

Remark 3.3. See Proschan and Sethurainan (1977) and Nevius,

Proschan and Sethuraman (1977) for a discussion of Schur

functions in statistics. In a sense, x majorizes ~ if the

coordinates of x are more spread out than the coordinates of ~~~.

The more spread out the cell frequencies are, the easier it

should be to decide which is the best cell and the smaller

the subset that need be selected. This is an interpretation of

condition (iii). 
V

Remark 3.4. By Theorem 4.1 of Berger (1979), this is a necessary

condition if a rule is to be minimax with respect to S or S’.

Remark 3.5. Gupta and Nagel (1967) proposed and studied the

following selection rule for this problem: select the jth

cell if x1 � X j + C where Xmin = min(x1, ... , Xk) and C is a

non-negative integer chosen so that the P*..condition is satisfied.

In general, this rule is not in V~ since neither (i) nor (iii)

- - . V V~ 
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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are true. In the special case of k — 2, however, it can be

verified that the Gupta-Nagel rule is in V~ since X2 — N - X1.
Of course , to sa t is fy  (iv)  exactly, this randomized version of

the Gupta-Nagel rule must be used :

11 Xj 
< Xmin + C

— 1~ 
x. a + C

10 x~~> X ~~~~+ C

So, by the following theorem, the Gupta-Nagel rule is minimax

if K — 2.

Theorem 3.1. If • V~ then • is minimax with respect to S

and S’.

Proof. The first fact to be verified is that if € 0* then

• ~~tistie3 the p* condjtjon Let T~. (~~: p � � 0 for all

j  � i and 
~ 

p. = 1). Then inf P-~ (CSj~~) = inf inf P (select
j 1  3 p - l�i�k P1 

2

jth cellie) — inf inf Ej,(~~(x)). Let Y have a binomial
lsi�k P1 — —

distribution with parameters N and p1. Then E(+
~
(
~

) )

E (6 (Y)). Since the binomial distribution has monotonePj i
likelihood ratio and since is a .~.;  ‘i i . . ~~~~~~~~ function ,

by Lemma 2, page 74 of Lehinann (1959), E (6 (Y)) is nonin-pi i
creasing in Pj. So the inf E.(~ CX) ) = inf E 

~~~~~ 
=

P. ~ P ~i1 i
E — ~~*• Thus inf P (CSI,) a j~~f ~~* — ~* and •pjal/k — 1�i�k
~~~~~~~~~~ the p*_condjtjon.
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Now (2.3) will be verified . By Theorem 3.1 of Berger

(1979), the minimax value is hr’ . so it s u f f ices to show tha t

sup E, (SI~
) — ~~~ for any • ~ 9~ . But, since S(x) is

p 
~~ — — —

Schur concave, by Application 4.2(a) of Nevius, Proschan and

Sethurainan (1977) E,,(S(X) ~~) is Schur concave in and hence

takes on the maximum value at p = (1/k, ... , 1/k).
k

E (S(X) I~
) I E. ~p~~(X) I E.. ( IS . CX ) )  = kP* by (iv) .

i— 1 — 0  i—l -0 ~ i
So (2.3) is verified .

Finally , by Theorem 3.2 of Berger (1979), if • is

minimax with respect to S then ~ is also minima x with respect

to S’ . I I
Other authors have provided bounds on E(S) for the rules

they have proposed . For example , Gupta and Ifuang (1975)

give an upper bound for E(S) when the parameters are in a

slippage configuration . But the result of Theorem 3.1 is

stronger in that ininimaxity considers all parameter configura-

tions and the exact upper bound of kP* for E(S) is achieved.

P~ is a wide class of selection rules which are minimax.

Finding one rule in P~ which has an additional optima lity

property may be accomplished by solving the following linear

programming problem . Consider ~ = ( IS
i

( 0 ) ,  ... ,

62(0)1 ..., 62(N), ~~~~~~~ 
6~~ ( 0 ) ,  ... , 6~~(N)) as the solution

vector for which we wish to solve. Condition (ii) provides

kN linear constraints on the solution. Condition (iii)

provides additional linear constraints on the solution. For ex-

ample, since ( 6, 2, 0) majorizes (5, 3, 1), we must have

V .
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6 1(6) + 62 (2) + 6
3

(0 )  6
1

( 5)  + 6
2

(3 )  + 6
3

( 1) .  F ina l ly ,

condition (iv) provides k additional linear constraints on

the solution. Subject to these constraints we wish to minimize

a linear function of the coordinates of 6, for

some p ’ � p0. The parameter ~ could be some particular

parameter value in which ti’e cxperimenter is particularly

interested . As an example, this problem was solved for

= .4(.l).9 and ~~~
‘ = (.1, .45, . U) and ~~

‘ = (.2, .4, .4)

in the case where k = 3 and N =- 6. The resulting minimax

rules are shown in Table 1. In finding these solutions, the

additional constraint was made that the solution was permuta-

tion invariant, i.e., 6
~~
(m) = 6~~(m) for all 1 � i, j ~~ k 

V .

and all 0 ~ m � N. These solutions were obtained using the

NYBLPC computer program . This program uses the criss-cross

method as developed by Dr. Stanley Zionts. The computations

were done on the CDC CYBER 74 at the Florida State University

Computing Center.

4. A SIMPLE RULE

An examination of Table 1 reveals that, in all cases when
p~ is large, the optimal rule obtained by solving the linear

programming problem , as outlined in Section 3, has the

following simple form;

~. x . < t
1 1

(4.1) $~ (x) — 6*(x .) a 
~~~ t.

— 1 

[o x~~> t

~~~~~ _ _ _ _ _ _ _ _ _ _
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Here t and a are chosen so that  condition ( iv )  (Section 3) is

satisfied. flamely,  let V have a binomial d i s t r ibu t ion  with

parameters 1/k and N. Then t is the integer which satisfies

P ( Y  t )  p * < P(Y t )  and ci (P * - P( Y  c t))/PC = t).

This rule is analogous to a rule proposed by Nagel ( 1970) for

selecting the largest cell probability. This rule is appealing

for its simplicity and because the constants t and a, needed

for implementation, can be easily obtained from a binomial

table. In this section the rule 4~ is studied more closely.

First, in Theorem 4.1, ~~ is shown to he minimax if ~~* ~~~

sufficiently large. Then, in Lemmas 4.1 and 4.2 and Theorem

4.2, •* is shown to have the following optimality property if

the parameters are in a slippage configuration . Suppose all

the cell probabilities are equal except for the ~
th •*

minimizes the probability of selecting the ~
th cell if its

cell probability is larger than all the rest and maximizes the

probability of selecting the ~th cell if its cell probability

is smaller than all the rest among all minimax rules.

Theorem 4.1. Let V have a binomial distribution with parameters

1/k and N. Then, if

(4.2) P* i-P(Y < 
~~) + ~~(Y = 

~~
.) ,

$* is minimax with  respect to S and S’ .

Proof. By Theorem 3.1 it suf f ices  to show € 0* . Conditions

C i ) ,  ( ii )  and ( iv)  are obviously sat isf ied by the def ini t ion of

—- j _ _ _ .___..__._ —— - --V ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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•*. It remains to show that (iii) is true, i.e., S*(x) =

~ 6~~(x 1) is a Schur concave function of x.
i=l

To see that S~ is Schur concave , suppose x majorizes y
k k —

where I y = N = . By t~ie result of Hardy , LittlewoodQ l ~~and Polya (1952 , pag’~ 47), we may assume, ~.‘ithout loss of

generality , that x and differ in two coordinates only, say ,

x . > y. � y. ~ x . where x .  + x . = y . + ~~.. Since the constants
1 1 j 1 ] 1 ~ J

t and a are chosen so that P(Y c t )  + a P ( Y  = t)  = P~~, (4.2)

implies that either t > or t = and a � ~~~. Since all of

the coordinates of x and are equal, except the ~th and ~th ,

S*(y) — S*(x) = 6*(y.) + 6*(y.) — 6*(x.) — 6*(x.). Since
— 1 3 1. 3

~ 
= N and y

~ ~ 0, 1 � t � k , y .  ~ � t. If y .  < t then
3 2 3

6 *( Y~ ) 6*(x
3

) = 3. and 5*(y~) � 8*(x1) so S*(y) — S*(x) � 0.

If t = then t = 
~
- =  Y~ 

= y~ and S*(~~) — S*(x) = a + a — 0 - 1  ~ 0

since a � if t = ~~. Thus S* is Schur concave .

V~1ues of the lower bound given in (6.2) are tabled in

Table 2 for Jc = 2(1) 10 and N = 1(1) 20. Table 2 reveals that,

for small values of k and N . tIis lower bound is reasonably

small. But as k or N increases , the lower bound converges to

one. So Theorem 4.1 shows that ~ * is minimax only for moderate

values of k and N. It can be shown that if N is an odd

number then the expression given in (4.2) is the same for both

N and N + 1. That is why one column suffices for each

consecutive odd-even pair in Table 2.

Now the behavior of ~~* when the parameter is in a

slippage, configuration will be examined . For the remainder of

~~~~
—V --V 

~~~~~~~~~~~~~
V - ~~~~~~~ 

-V V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-— --- —-~~ - .- - V.--
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this section let ~~
‘ — (p, . . .,  p, q, p, . . . ,  p) where (k - l)p + q — 1

ana q is the 1th coordinate. The following result will be

proven.

Theorem 4.2. Suppose •~ is minimax . Then among all minimax

rules , $, •~ maximizes P , (select ~th cell 1+) if q 
~ 
p and

,* minimizes P . (select ~th cell 14 1 ) if q > p.

The proof 6f Theorem 4.2 will be accomplished via the

following two lemmas.

Lemma 4.1. Suppose q < p. Among all rules, 4 ,  which satisfy

P
2 
(select ~th cell I s )  ~ P* , •* maximizes P2,(select ~th

cell

Proof. For any p and •, P
2
(select 1th cell I5 )  — E

~~~
$
i

( X ) .

By the Neyman-Pearson Lemma, among all rules which satisfy

E $ CX ) � P*, a rule which maximizes E ,~~~~~
. CX ) is given by

eo i ~( N ) x1 N—Y j
~~~~q p

N -N >~~~~ V

( ,,~
V )

(4.3) •.(x) a1- .

0

where t and a are chosen so that E •.(X) — P* . Using the
Lo 1 —

fact that q < ~~, it can be seen that (4.3) is equivalent to

(4.1). H

_________________ -~~~~~ 
. .
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Lemma 4.2. Let q > p. Among all rules, 5, which satisfy

P
2 

(select 4 th cell (j) ~ P~ , •* minimizes P (select ith

cell It) .

Proof. The proof follows the same lines as that of Lemma 4.1. II

Proof of Theorem 4.2. By Theorem 4.1 of Berger (1979),

every rule, •, which is minimax with respect to S or S’ must

satisfy P... (select ~th cell — ~~~~~ So Theorem 4.2 follows

from Lemmas 4.1 and 4.2. II
Seal (1955, Section 4) examir~ s a slippage problem,

analogous to the one considered in Theorem 4.2, for the

normal means selection problem. He shows, “approximately,”

that a certain rule has the property that 4~ 
has in the

multinomial problem. “Approximately ’ is Seal’s term. It

ref ers to the fact that he used an asymptotic argument. But

his result can be proved exactly using the ~~ia~i~Paar~ori

Lemma as in Lemmas 4.1 and 4.2.

5. SELECTION IN TERMS OF THE
LARGEST CELL PROBABILITY .

In some problems the experimenter might be interested

in selecting a subset of the cells including the cell

associated with the largest cell probability. In this

problem a correct selection, CS, is the selection of any subset

including the cell associated with In this section,

results analogous to those found in Sections 3 and 4 will be

briefly outlined.



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -,

13

The following class of selection rules can be shown to

be minimax with respect to S and S .  Let 0
~ 

be the class of

selection rules which sa t is fy  ( I ) ,  ( i i ’) ,  (iii) and (iv )

where (i)~ (iii) and (iv) are as in Section 3 and (ii’)

61(m) � , (n )  if 0 s m � n ~c N and 1 s i � k, i.e., the

probability of selecting the 1th cell increases as the number

of observations in the ~~~ cell increases.

Theorem 5.].. If ~ 0~ then ~ is minimax with respect to S

and S’.

Proof. This proof follows the lines of the proof of Theorem

3 .1 where now (ii’) is used to show that if ~ ~ V~ then ±
satisfies the P*_condition . I

Rules in V~ can be constructed by solving a linear

programming problem . The condition that c V~ puts linear

constraints on the vector of selection probabilities

= 
l~~~~’ ~~~~~~~ 

The ~ which minimizes E2.(SI6) for

some 
~~~~~

‘ 
subject to the constraint ~ ~ can be solved for.

This was done for P~ = .4(.-l)..9 and ~~~
‘ (.8, .1, .1) and

= (.6 , .2, .2) in the case where K = 3 and N = 6. The

same rule was found to he optimal for both p ’ and p ’. The

resulting minimax rule is presented in Table 3.

A particularly s imple rule , which arose as the solution

to the linear programming problem when ~ * was large, is the

following;

— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~
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1 if x~~> t

(5.1) •~~~
(
~s) — 

~~(x~
) a if xi — t

0 if x 1 < t

where a and t are chosen so that condition ( iv)  is satisfied .

is the rule proposed by Nagel (1970) .  
~~~~~~~

, like ±* in

Section 4 , is minimax if P* is large and performs well in

the slippage configuration . Specifically, the following

two theorems are true.

Theorem 5.1. Let V have a binomial distribution with parameters

1/k and N. Then, if

(5.2) ~~* -
~ PC? > 1) + P ( Y  1) ,

$“ is minimax with respect to S and S’ .

Proof. If (5.2) is true then ±* ~ ~~~
. The key point to

verify is that S~~(~ ) = 
~ ~

S~,(x.) is Schur concave. This can be
i=l 1

verified using the fact that (5.2) implies either t = 1 and

a or t = 0. H
V 

For fixed values of N and P~ , the lower bound given in

( 5 . 2)  is a decreasing function of k.  So for ~i:~ed N and ~ *,

~~ 
will be minimax if k is sufficiently large. The value of

the lower bound given in (5.2) is tabulated for N 1 ( 1) 20

V and k a 2 (1) 10 in Table 4.

Finally , 
~~* 

performs well if the parameters are in a

slippage configuration. Let E ’ (‘~~ ..., p , q, p, . . . ,  p)

where (k - l )p  + q = 1 and q is the ~th coordinate. The

following result, analogous to Theorem 4.2, is true.

- - _ _ _
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Theorem 5.2. Suppose 
~~ 

is mir .imax. Then among all minimax

rules, +~ ± ,~ maximizes , (selec t ~th cell Is ) if q > p and

minimizes P1. (select ~
th cell It) if q < p.

The proof of Theorem 5.2 is completely analogous to the

proof of Theorem 4.2 and is omitted .

6. SELECTION RULES FOR POISSON PM~AMETERS.

The selection rules constructed in Sections 3 and 5 can

also be used for selection problems involving Poisson parameters.

These rules will also be minimax for these Poisson selection

problems. Selection rules for the Poisson distribution have

previously been studied by Gupta and Nagel (1971) and Gupta

and Huang (1975). Goel (1972) showed that the usual location

and scale type selection rules do not satisfy the P*_condition

in this problem b r  large values of P~ .

Specifically let ~ = 
~~~~ ~‘~~) be independent Poisson

random variables wi th  parameters X = ( X ~~, ...

Let N = I V . The j oal is to select a subset of the
i=1

population including the one associated with the largest or

smallest parameter \ , . The ~‘onditiona 1 distr ibution of Y

given N a N is mul t inomial wi th parameters ~ and N wherek
— A~~/ ~ X .. So if N a 

~~ we can use the rule constructed
in]. ~

in Section 3 or S for a sample of size N. This rule has the

property that P~ (CSIM = 
~~ ) ~-. p* for 0 N < a and all A .  So

unconditionally, P
A
(CS) ~ ~)* for all A , using this rule, i.e.,

4 the rule ~.i ti - ~.fie~. the P* cofldition . Similarly Ex (S)

- ______________
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for all A since E
~~(SIN N) � kP* for 0 � N < and all A , i.e.,

the rule is minimax with respect to S. N is a complete

sufficient statistic for A on the set = ( A :  A 1 
a A~~}.

By Lemma 1.1 of Gupta and Nagel (1971) if PA (CSI±) = p* on

then P A ( C S I N  = N) = P~ for 0 ‘ N < a , But P~ (CSl.) p* on is

a necessary condition for minimax ity by Theorem 4.1 of Berger

(1979). So considering rules conditional on ~i is natural in

this problem.

_ _ _ _ _ _ _  ______  -V~~~~ -V-V~V V •  -
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Table 1

Minimax selection ru le  for  P1 11 w!.ich minimizes K , (S)

— ( . 1 , .45 , . 4 i )  ~ 
a 6 k — 3

‘(select i cell x )

.9 .J  .7 6 ..~ .4

0 1.000 1.003 .386 .759  .633 .506

1 1.000 1.000 .~sd6 .759 .633 .506

2 1.000 1.000 .386 .759 .633 .506

3 1.000 .545 .443 .380 .316 .253

4 .002 .000 .000 .000 .000 .000

S .000 .000 .000 .000 .000 .000

6 .300 .000 .000 .000 .000 .000

E
Q 

(S~~5) 2 . 46 9  2 . 2 i ~6 1.929 l.~~5.e 1.37t4 1.102

a ( . 2 , .~~~~~ , . 4 )

.9 .t i  .7 .E  .:, •

~~~~~~~~~~ V

U 1 . O u . )  1 . 0 00  .718 .6~.7 . ~56 .300

1 1.000 1.000 . 7 ) b  . 6 . 7  • 5~ 6 .500

1.000 1 .U 1~0 .77 ~ .t c , 7 .5-u ..60

3 1. ~)00 . . ~~~76 . 6f. 7 .356  .2 7 2

4 .002 .000 .000 .000 .OOC .000

.00 ’)  . 0 0 0  .0 0 0  . 0 0 0  . 00 0  .3 0 0

6 .000 .000 .030 .000 .000 .000

E , ( S ~~ 6 )  2 .6 25  2 . 3 36  2 . C 4 2  1.750 l.45L3 l.ló&

- - _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~ 

~~- ~~~~~~~~~~~~~~~~~ ~~~~—~~ -——
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Table 2

Lower bound for ~ *

If ~ * ~ table entry, ~~ is minimax . V

N 1,2 3,4 5,6 7,8 9,10 11,12 13,14 15,16 17 ,18 19 ,20

2 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000

3 .6667 .7407 .7901 .8267 .8552 .8779 .8965 .9118 .9245 .9352

4 .7500 .8438 .8965 .9294 .9511 .9657 .9757 .9827 .9876 .9911

5 .8000 .8960 .942 1 .9667 .9804 .9883 .9930 .9958 .9974 .9984

6 .8333 .9259 . 9645 .9324 .9910 .9954 .9976 .9987 .9993 .9996

7 .8571 .~ 44o .9767 .9i98 .9955 .9979 .9991 .9996 .9998 .9999

8 .8750 .9570 .9839 .)938 .9975 .9990 .9996 .9998 .9999 1.0000

9 .8889 .9657 .9885 .9960 .9986 .9995 .9998 .9999 1.0000 1.0000

10 .9000 .9720 .9914 .9973 .9991 .9997 .9999 1.0000 1.0000 1.0000
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Table 3

;~ini .ldx selection rule tor which

minUuizes E • (S) and E (5)
2

2’ = (.8 , .1, .1) ~~~~
‘ = (.6 , .2, . 2 )  N t k = 3

5(x) P(selec’t i~~ ce ll ~X. = x)

x .9 .8 .7 .6 .5 .4

0 .~)00 .000 .000 .000 .000 .000

1 .954 .s74  .448  .384 .320 .25 3

2 1.000 1.000 .897 .768 .639 .507

3 1.000 1.000 .897 .7 6 t  .639 .507

4 1.000 1.000 .~~97 • 7 t 3  .639 .5 07

5 1.000 1.000 .897 .768 • t 8 0  . 747

6 1.000 1.000 1.000 1.000  1.000 1.000

r~~, 
(~~I ó )  1.904 1.635 1.4 ~~ 1 .276  l .l2 .~ 1.025

F :; (S~~~) 2 . 433 2.121 1.852 1.594 1.341 1.112 V

k

________________________________ 
~~~~~~~~~~~~~~~
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Table 4 
V V

Lower bound for ~~*

If P~ t~blc entry , 
~~ 

is rni nimax
k 2 .S 4 5 7 S 9 10 - V

I • 2S~~) . 16b7 . 1250 . 100(1 .0833 . 07 14 . 0~ 2S . 05S~ .0500

2 .5000 .3333 .2500 .2000 . 1t~6
. 

. I4~~ .1250 . 1111 . 1000
3 ~~~~ . $ 5 1 5  . 3 c :  . h)t ’O .247 .2125 . 15c~S . 1tt~0 .1495

4 • S~~~ , .~~s )  ~~~~~ . .S5~’ ~~~~~~~ .2 S L L S  .Th’~ .2 19t~ .1:)S1

~. .~-‘~)t ’4~ .7 03~ .S~ 49 .-1t ’~. .39 2  ~~~~~~~~~~~ ~~~~~~ . ~~~~~~~~~~ 2455

t’ ~~~~ .~~h’S .~ 440 .5~~1 . ~~‘42 .4i~’1 ~~~~ .321~1 .291-1

.9~~s4~~ .5390 .71~ S .t0~ S . S2.~t’ .4~~15 .4 110 ~~~~~~~ .3357

5 .9805 .S529 . 7 ’ .t .~~‘45 .5514 .:- 14-l .4~ 00 .4 154 .3752

9 .9893 .91S5 .V ~~~t2.’ . ~‘.$s .(5 t$ .:~~30 .S0&~l .4587 .4159 V

10 .994 1 .9393 . $495 . 7554 . -0~~’ .5490  . 499 c~ .45Th

11 .99~S .95b~ . 5503 79 -0 . 174 . 5559 . ~ssi .4944 V
12 . 9 9 5 V .:)~~92 .9050 .,~2 

s _ • 533 . t ’S:- ’ .~~259 .5 742  .5293

13 .999! .9 S2 .9.~4S . 5S~~ . ~ S - ~ ) . 7 19 2 . ~‘& ‘01 . t~0S0 .5 t ~22

14 • 99 )5 • 9 S $ ,  .94 ~ .5 ’91 ..U31  .‘ ~97 .t~91~ .t ,395 .5933
15 .999~ .9S~ 2 .9’32 .8955 .53~~ . ~~ 2 . 205 .c’~ S) .c~225
lb .9999 . 99.~l .9~ 33 . :) I S ~~ .5594 .8019 . ~4~ 0 . c~9t~2 . (500

17 .999~ •9~4 .97 12  . o2Y ~ .$ ‘ ss .5 . 4 2 .~~~1. . 215 ~~~~~
18 1 . 0000 . 99b3 . j  15 .8945 . 84-I I . ‘934 . ‘450 . ~99S
19 1 . 0~~00 .9~r•1 .95 24 .9514 .9092 . St~19 • S 1St’ . .

20 1.0000 • 995.~ .~)5~ 3 .9 59~ .9217 S~~ S .53 19 . ‘8~~ .743 5

_ _  ~~—- - -  ~~~~~~~~~~~~~~~~~~~ V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Linear ~r r.uiv~ii t i~~ . 
;~initmtx subset ‘c Iect i~~ . ~‘xpcc ted  subset si  ze.  

---~~~~——  -—

I et (x 1 ) .‘t ’ a n u l  t t n ~’mi -~ 1 v ’~ or t~ i t  h uitk:.owii c~’ I I  pr obahi  1 ~ t ies  
~p1 

p~)

A subset of the ce1l~ 1:’ to be s e 1 V ~c ted  in a w ay s ’  that  the ~c~~l assoc i a t e 1  w i t h  t he  sma l l e s t

cell probabil ity is included in t~ie se l e ct ed  sui’~ et ~ i t~i a prt’ass i gned pro~iab i 1i t ~ •

Suppose the loss is measur e l l’v t i e  si:e ~i t i e  - i e ct -d sub set . ~~. nsing l inear  progra mming

techniques , select Loi~ rules can ~e’ con s t ruc t  ‘d c~ V t r e  nima~ w i t h  respect to S in the

class of rules which sat i s~~- the P~ —cond i t io n . In some s ituat ions , the rule construc t ed by

this method is the’ rule propo~-cd by Na~ el (l9~0) Sim ilar techniques a lso work for se lection V

in te’rms of the largest ce l l  prol ’-t h i l i ty .  r$w rules constructed in this fashion are also

mm m ix for S C i C c t  ion in terris of Poisson parameters .
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